
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS        Vol. 9, No. 1-2, January – February 2015, p. 248 - 255  

 

Computing Omega, Sadhana and PI polynomials of 

benzoid carbon nanotubes
 

 

 

A. Q. BAIG
*
, MUHAMMAD IMRAN

a
, HAIDAR ALI 

Department of Mathematics,COMSATS Institute of Information Technology, Attock, Pakistan 
a
Department of Mathematics,School of Natural Sciences (SNS),National University of Sciences and Technology (NUST), 

Sector H-12, Islamabad, Pakistan 

 

 
 
Counting polynomials are those polynomials having at exponent the extent of a property partition and coefficients the 
multiplicity/occurrence of the corresponding partition. These polynomials were proposed on the ground of quasi-orthogonal 
cuts edge strips in polycyclic graphs. These counting polynomials are useful in the topological description of bipartite 
structures as well as in counting some single number descriptors, i.e. topological indices. These polynomials count equidistant 
and non-equidistant edges in graphs.In this paper, Omega, Sadhana and PI polynomials are computed for Benzoid 
nanotubes for the first time. The analytical closed formulas of these polynomials for the circumcoronene series of benzenoid 

kH , hexagonal parallelogram ),( nmP  and zigzag-edge coronoid fused with starphnene ),,( mlkZCS  nanotubes are 

derived in this paper.  
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1. Introduction and preliminary results 
 

Mathematical chemistry is a branch of theoretical 

chemistry in which we discuss and predict the chemical 

structure by using mathematical tools and doesn’t 

necessarily refer to the quantum mechanics. Chemical 

graph theory is a branch of mathematical chemistry in 

which we apply tools from graph theory to model the 

chemical phenomenon mathematically. This theory 

contributes a prominent role in the fields of chemical 

sciences. 

Carbon nanotubes (CNTs) are types of nanostructure 

which are allotropes of carbon and having a cylindrical 

shape. Carbon nanotubes, a type of fullerene, have potential 

in fields such as nanotechnology, electronics, optics, 

materials science, and architecture. Carbon nanotubes 

provide a certain potential for metal-free catalysis of 

inorganic and organic reactions. 

Counting polynomials are those polynomials having at 

exponent the extent of a property partition and coefficients 

the multiplicity/occurrence of the corresponding partition. 

A counting polynomial is defined as follows: 
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Where the coefficient ),( kGm  are calculable by various 

methods, techniques and algorithms. The expression (1)  

was found independently by Sachs, Harary, Mili c , 

Spialter, Hosoya, etc [5]. The corresponding topological 

index )(GP  is defined in this way:  
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A moleculer/chemical graph is a simple finite graph in 

which vertices denote the atoms and edges denote the 

chemical bonds in underlying chemical structure. This is 

more important to say that the hydrogen atoms are often 

omitted in any molecular graph. A graph can be represented 

by a matrix, a sequence, a polynomial and a numeric 

number (often called a topological index) which represents 

the whole graph and these representations are aimed to be 

uniquely defined for that graph. 

Two edges uve =  and xyf =  in )(GE  are said 

to be codistant, usually denoted by e co f , if  

 

),(=),( vyduxd  

 and  

1),(=1),(=),(=),(  vyduxduydvxd  

 

The relation “ co " is reflexive as e co e  is true for 

all edges in G , also symmetric as if e co f  then f

co e  for all )(, GEfe   but the relation “ co " is not 

necessarily transitive. Consider  

 

}:)({=)( ecofGEfeC   
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If the relation is transitive on )(eC  also, then )(eC  is 

called an orthogonal cut “ co " of the graph G . Let 

uve =  and xyf =  be two edges of a graph G , which 

are opposite or topological parallel, and this relation is 

denoted by fope . A set of opposite edges, within the 

same face or ring, eventually forming a strip of adjacent 

faces/rings, is called an opposite edge strip ops, which is a 

quasi-orthogonal cut qoc (i.e. the transitivity relation is not 

necessarily obeyed). Note that “ co " relation is defined in 

the whole graph while “ op " is defined only in a face/ring. 

In this article, G  is considered to be simple connected 

graph with vertex set )(GV  and edge set )(GE , 

),( kGm  be the number of ops of length k , 

|)(=| GEe  is the edge cardinality of G . 

The omega polynomial was introduced by Diudea et al. 

in 2006  on the ground of op strips. The Omega 

polynomial is proposed to describe cycle-containing 

molecular structures, particularly those associated with 

nanostructures. 

Definition 1.1. [4] Let G  be a graph, then its Omega 

polynomial denoted by ),( xG  in x  is defined as  
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The Sadhana polynomial is defined based on counting 

opposite edge strips in any graph. This polynomial counts 

equidistant edges in G . 

Definition 1.2.[6] Let G  be a graph, then Sadhana 

polynomial denoted by ),( xGSd  is defined as  
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The PI polynomial is also defined based on counting 

opposite edge strips in any graph. This polynomial counts 

non-equidistant edges in G .  

Definition 1.3.[6] Let G  be a graph, then PI 

polynomial denoted by ),( xGPI  is defined as  

 
ke

k

xkkGmxGPI  ),(=),(  

 

Yazdani et al. determined Padmakar-Ivan (PI) 

polynomials of ],2[4765 qpCCHAC  nanotubes.  

Theorem 1.0.1.[17] Let G  be the 765 CCHAC  

nanotube, then PI polynomial of G  is  
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Ashrafi et al. computed Sadhana polynomial of 

V-phenylenic nanotube and nanotori.  

Theorem 1.0.2.[1] Let G  be the graph of 

V-phenylenic nanotube, then Sadhana polynomial of G  is  

 

 



},{2)|(|2)|(|

1},{

1=

1)|2(|4=),( nmMinGEiGE
nmMax

i

xmnxxGSd  

 
nGEmGEmGE xnxmnx   )|(|2)|(|2)|(| 1)(1)(  

All nanotubes are allotropes of carbon and are a type of 

fullerene. Ghorbani et al. computed Omega and Sadhana 

polynomials of an infinite family of fullerene nC10 , 

10n . 

Theorem 1.0.3. [8] Consider the fullerene graph nC10

, 10n . Then the Omega and Sadhana polynomials of 

nC10  are computed as follows: 
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Recently, Imran et al. computed the topological indices 

of of nanostar dendiremers, polyomino chains and 

interconnection networks[9-14]. The preceding results are 

used to compute their corresponding topological indices 

which provides a good model correlating the certain 

physico-chemical properties of these carbon allotropes.  

 

 

2. Results and discussion 

 
In this paper, we compute Omega, Sadhana and PI 

polynomials of The Circumcoronene series of Benzenoid 

kH , Hexagonal Parallelogram ),( nmP  and 

Zigzag-edge Coronoid fused with Starphnene 

),,( mlkZCS  nanotubes. For further study of these 

polynomials their topological indices and polynomials of 

various nanotubes, consult [3, 9-14, 16]. These polynomials 

are used to predict various physico-chemical properties of 

certain chemical compounds. 

 

 

2.1 The circumcoronene series of benzenoid Hk  

    nanotubes 

 

In this section, we compute Omega, Sadhana and PI 

polynomials for kH  nanotubes. This nanotube is a 
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trivalent decoration having plane tiling of hexagon. The 

series kH  plays a special role among hexagonal graphs 

(alias benzenoid graphs) and is known as the 

coronene/circumcoronene series. The first term of it is the 

cycle 6C  which is the molecular graph of the benzene. 

This family of nanotubes is usually symbolized as kH . 

We have 
26|=)(| kHV k  and 

))2(3(2|=)(|
1

1=

rkkHE
k

r

k 


.  

 

 
Fig. 1. A representation of H3 namotube. 

 

 

Theorem 2.1.1.The Omega polynomial of kH  

nanotube  k ∈ℕ, is as follows: 
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Proof: Let G  be the graph of kH  nanotube  k

∈ℕ, Table 1 shows the number of co-distant edges in G . 

By using Table 1 the proof is mechanical. Now we apply 

formula and do some calculation to get our result.  
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Table 1. Number of co-distant edges of kH  nanotube. 
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Now we compute Sadhana polynomial of kH  

nanotube  k ∈ℕ. Following theorem shows the Sadhana 

polynomial for this family of nanotubes. 

Theorem 2.1.2. Consider the graph of kH  nanotube 

 k ∈ℕ. Then its Sadhana polynomial is as follows: 
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Proof: Let G  be the graph of kH  nanotube  k

∈ℕ. The proof of this result is just calculation based. We 

prove it by using Table 1 . We know that 
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Next we compute PI polynomial of kH  nanotube. 

Following theorem explains the PI polynomial of this 

family of nanotubes.   

Theorem 2.1.3. Consider the graph of kH  nanotube 

 k ∈ℕ. Then its PI polynomial is as follows: 
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Proof: Let G  be the graph of kH  nanotube  k ∈ℕ. 

We prove it by using Table 1. We know that 
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2.2 Hexagonal ParallelogramP(m, n) ∀ m, n ∈ℕ  

    nanotube 

 

In this section, we determine Omega, Sadhana and PI 

polynomials for ),( nmP  Nnm,  nanotube. This 

nanotube have also applied the interpolation method to 

some other classes of two parametric families of graphs. 

We just briefly present them for the hexagonal 

parallelogram graphs ),( nmP . These graphs consists of a 

hexagons arranged is a parallelogram fashion, where the 

hexagonal parallelogram graph (5,4)P  is depicted in 

figure. In ),( nmP  nanotube, where m  is the number of 

hexagons in any row and n  is the number of hexagons in 

any column. We have mnnmnmPV 222|=)),((|   

and  
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Now we compute Omega polynomial of ),( nmP  

nanotube.   

 

 
 

Fig. 2. A representation of P(5,4) nanotube. 

Theorem 2.2.1.The Omega polynomial of ),( nmP  

nanotube  Nnm,  is as follows: 
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Proof: Let G  be the graph of Hexagonal 

Parallelogram ),( nmP  Nnm,  nanotube. Table 2, 

3 and 4 shows the number of co-distant edges in G . By 

using Table 2, 3 and 4 the proof is straightforward.  

 

 

Table 2. Number of co-distant edges of ),( nmP 

Nnm,  nanotube when m = n 
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Table 3. Number of co-distant edges of ),( nmP 

Nnm,  nanotube when m > n 
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Table 4. Number of co-distant edges of ),( nmP 

Nnm,  nanotube when m < n 
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Now we apply formula and do some easy calculation to 

get our result.  
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In the following theorem, the Sadhana polynomial of 

Hexagonal Parallelogram ),( nmP   m,n ∈ℕ nanotube 

is computed. 

Theorem 2.2.2.The Sadhana polynomial of Hexagonal 

Parallelogram ),( nmP  Nnm,  nanotube is as 

follows:  
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Proof: Let G  be the graph of Hexagonal 

Parallelogram ),( nmP  m,n ∈ℕ  nanotube. By using 

Table 2, 3 and 4, the proof is easy. Now we apply formula 

and do some computation to get our result.  
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Now we compute PI polynomial of Hexagonal 

Parallelogram ),( nmP  Nnm,  nanotube. 

Following theorem shows the PI polynomial for this finite 

family of nanotubes.  

Theorem: Consider the graph of Hexagonal 

Parallelogram ),( nmP  Nnm,  nanotube. Then its 

PI polynomial is as follows:  
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Proof: Let G  be the graph of Hexagonal 

Parallelogram ),( nmP m,n ∈ℕ nanotube. The proof of 

this result is just calculation based. We easily prove it by 

using Table 2, 3 and 4. We know that  

 
ke

k

xkkGmxGPI  ),(=),(  



Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes                          253 

 

For nm =  

)1()1(2122

)1()1(21221

1=

)1()1(2122

1

1=

1

1=

1

1=

)1()1(
1

1=

2122

1

1=

)1(

)1(2)1(

)1(=),(























minmmn

iinmmnm

i

minmmn

m

i

m

i

m

i

ni
m

i

nmmn

m

i

xm

xixnm

xmnxGPI

 

)1(1221

=1

)1(222

)1(22

1

1=

1

1=

1

1=

)1(2)(

)1(=),(













inmmnm

i

immn

inmmn

m

i

m

i

m

i

xixmmn

xnmmnxGPI

 

 For nm >  

)1()1(2122

)1()1(2122

1=

)1()1(2122

)1()1(2122

1=

1=1=1=

1=

)1(

)1(2)1(

)1(=),(













ninmmn

iinmmnn

i

ninmmn

minmmn

n

i

n

i

n

i

n

i

n

i

xn

xixnm

xmnxGPI

 

)1(122

=1

)1(22

)1(222

1=

1=

1=

)1(2

)1(

)(=),(













inmmnn

i

inmmn

inmn

n

i

n

i

n

i

xi

xnmmn

xnmnxGPI

 
 

For nm <  
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2.3 Zigzag-edge Coronoid fused with Starphene  

    nanotubes ZCS(k,l,m)  

 

In this section, we compute Omega, Sadhana and PI 

polynomials for ),,( mlkZCS  nanotubes. This system 

considered in this work is a composite benzenoid obtained 

by fusing a zigzag-edge coronoid ),,( mlkZC  with a 

starphene ),,( mlkSt . This system, abbreviated as 

),,( mlkZCS , is depicted in figure (4,4,4)ZCS . We 

have 5436|=)),,((| kmlkZCSV  and 

63151515|=)),,((|  mlkmlkZCSE . Now we 

compute Omega polynomial of Zigzag-edge Coronoid 

fused with Starphene ),,( mlkZCS  nanotube. 

 
Fig. 3. A representation of (4,4,4)ZCS  nanotube. 

 

 

Theorem 2.3.1.The Omega polynomial of nanotube 

),,( mlkZCS  for 4== mlk  is equal to:  

 
211522115221152 9)(9)(9)(=)),,,((   mlk xmxlxkxmlkZCS  

 

Proof: Let G  be the graph of ),,( mlkZCS  nanotube 

for 4== mlk . Table 1 shows the number of 

co-distant edges in G . 

By using Table 5 the proof is straightforward. 

 

Table 5. Number of co-distant edges of ),,( mlkZCS  

nanotube. 

 

Types of 

qoc’s 

Types of 

edges 

No of 

co-distant 

edges 

No of 

qoc 

1C  1e  15k - 21 
k

2 
+ 9

 

2C  2e  15l - 21

 
l
2
 + 9 

3C  3e  15m - 21 m
2 
+ 9 

 

Now we apply formula and do some easy calculation to 

get our result.  
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k

xkGmxG   ),(=),(  

211522115221152 9)(9)(9)(=),(   mlk xmxlxkxG

 

In the following theorem, the Sadhana polynomial of 
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),,( mlkZCS  nanotube is computed.   

 

Theorem 2.3.2. The Sadhana polynomial of 

),,( mlkZCS  nanotube for 4== mlk  is as 

follows:  

 

  42151524215152 9)(9)(=),( mkml xlxkxGSd
4215152 9)(  lkxm  

 

Proof: Let G  be the graph ),,( mlkZCS  of 

nanotube for 4== mlk .By using Table 5 the proof is 

easy. Now we apply formula and do some computation to 

get our result.  
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  21156315151522115631515152 9)(9)(=),( lmlkkmlk xlxkxGSd

 

 
2115631515152 9)(  mmlkxm  

  42151524215152 9)(9)(=),( mkml xlxkxGSd
4215152 9)(  lkxm   

 

Now we compute PI polynomial of ),,( mlkZCS  

nanotube for 4== mlk . Following theorem shows 

the PI polynomial for this finite family of nanotubes.  

 

Theorem 2.3.3. Consider the graph of ),,( mlkZCS  

nanotube, for 4== mlk . Then its PI polynomial is as 

follows:  

 

 

  42151523 189)13521(15=)),,,(( mlxkkkxmlkZCSPI

  42151523 189)13521(15 mkxlll  

42151523 189)13521(15  lkxmmm  

 

Proof: Let G  be the graph of ),,( mlkZCS  

nanotube, for 4== mlk . The proof of this result is 

just calculation based. We easily prove it by using Table 5. 

We know that  
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42151523 189)13521(15=),(  mlxkkkxGPI

+ 
42151523 189)13521(15  mkxlll  

+
42151523 189)13521(15  lkxmmm  

 

 

3. Conclusion and general remarks 
 

In this paper, three important counting polynomials 

called Omega, Sadhana and PI are studied. These 

polynomials are useful in determining Omega, Sadhana and 

PI topological indices which play an important role in 

QSAR/QSPR study. We computed these polynomials for 

kH  nanotube, ),( nmP  nanotube and ),,( mlkZCS  

nanotube.  
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