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Counting polynomials are those polynomials having at exponent the extent of a property partition and coefficients the
multiplicity/occurrence of the corresponding partition. These polynomials were proposed on the ground of quasi-orthogonal
cuts edge strips in polycyclic graphs. These counting polynomials are useful in the topological description of bipartite
structures as well as in counting some single number descriptors, i.e. topological indices. These polynomials count equidistant
and non-equidistant edges in graphs.In this paper, Omega, Sadhana and PI polynomials are computed for Benzoid
nanotubes for the first time. The analytical closed formulas of these polynomials for the circumcoronene series of benzenoid

H, . hexagonal parallelogram P(m, n) and zigzag-edge coronoid fused with starphnene ZCS(K, 1, m) nanotubes are

derived in this paper.
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1. Introduction and preliminary results

Mathematical chemistry is a branch of theoretical
chemistry in which we discuss and predict the chemical
structure by wusing mathematical tools and doesn’t
necessarily refer to the quantum mechanics. Chemical
graph theory is a branch of mathematical chemistry in
which we apply tools from graph theory to model the
chemical phenomenon mathematically. This theory
contributes a prominent role in the fields of chemical
sciences.

Carbon nanotubes (CNTSs) are types of nanostructure
which are allotropes of carbon and having a cylindrical
shape. Carbon nanotubes, a type of fullerene, have potential
in fields such as nanotechnology, electronics, optics,
materials science, and architecture. Carbon nanotubes
provide a certain potential for metal-free catalysis of
inorganic and organic reactions.

Counting polynomials are those polynomials having at
exponent the extent of a property partition and coefficients
the multiplicity/occurrence of the corresponding partition.
A counting polynomial is defined as follows:

P(G,x) = > m(G,k)x* @)

Where the coefficient m(G,K) are calculable by various
methods, techniques and algorithms. The expression (1)

was found independently by Sachs, Harary, Mili ",
Spialter, Hosoya, etc [5]. The corresponding topological

index P(G) is defined in this way:

P(G) = P'(G,X)|,,= > m(G, k) xk

A moleculer/chemical graph is a simple finite graph in
which vertices denote the atoms and edges denote the
chemical bonds in underlying chemical structure. This is
more important to say that the hydrogen atoms are often
omitted in any molecular graph. A graph can be represented
by a matrix, a sequence, a polynomial and a numeric
number (often called a topological index) which represents
the whole graph and these representations are aimed to be
uniquely defined for that graph.

Twoedges €=UV and f =Xy in E(G) are said
to be codistant, usually denoted by € cO f , if

d(x,u) =d(y,v)
nd
i d(x,v) =d(y,u) =d(x,u)+1=d(y,v)+1

The relation “CO " is reflexive as € CO € is true for
all edges in G, also symmetric as if € CO f then f

coe forall e, f e E(G) but the relation “CO" is not
necessarily transitive. Consider

C(e)={f €E(G): f coe}



Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes 249

If the relation is transitive on C(e) also, then C(e) is

called an orthogonal cut “CO " of the graph G . Let
e=uv and f =xy betwo edges of agraph G, which
are opposite or topological parallel, and this relation is
denoted by e op f . A set of opposite edges, within the
same face or ring, eventually forming a strip of adjacent
faces/rings, is called an opposite edge strip ops, which is a
quasi-orthogonal cut qoc (i.e. the transitivity relation is not
necessarily obeyed). Note that “ CO " relation is defined in
the whole graph while “0p " is defined only in a face/ring.
In this article, G is considered to be simple connected
graph with vertex set V(G) and edge set E(G),

m(G,k) be the number of ops of length Kk ,
e =| E(G) ]| is the edge cardinality of G .
The omega polynomial was introduced by Diudea et al.

in 2006 on the ground of op strips. The Omega
polynomial is proposed to describe cycle-containing
molecular structures, particularly those associated with
nanostructures.

Definition 1.1. [4] Let G be a graph, then its Omega
polynomial denoted by Q(G, X) in X is defined as

Q(G,x) = > m(G,k)xx"

The Sadhana polynomial is defined based on counting
opposite edge strips in any graph. This polynomial counts

equidistant edges in G .
Definition 1.2.[6] Let G be a graph, then Sadhana
polynomial denoted by Sd (G, X) is defined as

Sd(G,x) = > m(G,k)x x**

The PI polynomial is also defined based on counting
opposite edge strips in any graph. This polynomial counts

non-equidistant edges in G .
Definition 1.3.[6] Let G be a graph, then PI
polynomial denoted by Pl (G, X) is defined as

PI(G,X) =D m(G,k)xkxx*"

Yazdani et al. determined Padmakar-lvan (PI)
polynomials of HAC.C,C,[4p,2q] nanotubes.

Theorem 1.0.1.[17] Let G be the HAC.C.C,

nanotube, then P1 polynomial of G is

9pq+E 6q 9pq—1745 p+2

_ 0Py P
PI(G,X)=gx “+px 4 +4gx —9pq—z+

(|V(GZ)|+1)
where |V (G) |= g pzq +gq+ p

Ashrafi et al. computed Sadhana polynomial of

V-phenylenic nanotube and nanotori.
Theorem 1.0.2.[1] Let G be the graph of
V-phenylenic nanotube, then Sadhana polynomial of G is
Max{m,n}-1

SAG,X)=4 Y XEOFA L o(n—m|1)xEC M

i=1

All nanotubes are allotropes of carbon and are a type of
fullerene. Ghorbani et al. computed Omega and Sadhana

polynomials of an infinite family of fullerene C,,, ,

n>10.
Theorem 1.0.3. [8] Consider the fullerene graph C,,

, N>10. Then the Omega and Sadhana polynomials of
C,,, are computed as follows:

n+3

(

{|10x +10x2 +10x™0.35¢m 2|n
10n1

(10x° +5x T +5x 2 +10x"° 2t n

Sd(Cygy, %) =

29n
j 10x™"2 +10x 2 +10x*"*%0.35cm 2|n

l 29n+3 29n-3

10X +5x 2 4+5x 2 +10xM™3 24n

Recently, Imran et al. computed the topological indices
of of nanostar dendiremers, polyomino chains and
interconnection networks[9-14]. The preceding results are
used to compute their corresponding topological indices

which provides a good model correlating the certain
physico-chemical properties of these carbon allotropes.

2. Results and discussion

In this paper, we compute Omega, Sadhana and Pl
polynomials of The Circumcoronene series of Benzenoid

H, . Hexagonal Parallelogram P(m,n) and
Zigzag-edge  Coronoid  fused  with  Starphnene
ZCS(k,I,m) nanotubes. For further study of these

polynomials their topological indices and polynomials of
various nanotubes, consult [3, 9-14, 16]. These polynomials
are used to predict various physico-chemical properties of
certain chemical compounds.

2.1 The circumcoronene series of benzenoid Hy
nanotubes

In this section, we compute Omega, Sadhana and PI
polynomials for H, nanotubes. This nanotube is a
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trivalent decoration having plane tiling of hexagon. The
series H, plays a special role among hexagonal graphs

(alias benzenoid graphs) and is known as the
coronene/circumcoronene series. The first term of it is the

cycle Cg which is the molecular graph of the benzene.
This family of nanotubes is usually symbolized as H, .
We have |IV(H,) = 6k? and

|E(H,) = 3(2k +§2(k +1)).

r=1

Fig. 1. A representation of Hz namotube.

Theorem 2.1.1.The Omega polynomial of H,

nanotube V K €N, is as follows:

Q(G, x) = 3{(2k —1) +2(2k — 2)x#+2*+1) 1 2(2k — ) x @K +2k+2)

+. ..+ 2kx 2@y
Proof: Let G be the graph of H, nanotube V K

€N, Table 1 shows the number of co-distant edges in G .
By using Table 1 the proof is mechanical. Now we apply
formula and do some calculation to get our result.

Q(G,x) = > m(G,k)xx"

Table 1. Number of co-distant edges of H, nanotube.

Types | Types | No of | No of qoc

of of co-distant

qoc’s | edges | edges
k-1 k-1

C, € 2k+22(k+f) 2k—1+2) (2k—-r-1)
k-1 kjl:l

C, e, 2k+3 2(k+1) | 2k-1+23 (2k—r-1)
P =

C, €, 2k+>2(k+1) | 2k—1+23 (2K -r-1)
r=1 r=1

k-1

- (2k+Zz(k+r))
QG,X) =3{(k-1)+2> 2k -r-1)x =}

r=1

= Q(G, X) = 3{(2k 1) + 2(2k —~1- )X 1 32k — 2 —1)x P22
+. 422k —K +1-1) @Dy
= (G, ) = 3{(2k 1) +2(2Kk — 2)xP"2D) 1 2k —3)x@*+24:2)
+.. .+ 2kxErEeey

Now we compute Sadhana polynomial of H,

nanotube W K €N. Following theorem shows the Sadhana
polynomial for this family of nanotubes.

Theorem 2.1.2. Consider the graph of H, nanotube
V K €N. Then its Sadhana polynomial is as follows:

Sd(G, x) = 3{(2k —1) + 2(2k — 2)x*@ ) 4 2(2k — ) x> 22

+... 2 =+ 2kX2(2k+2(k+k,1))}
Proof: Let G be the graph of H, nanotube V K

€N. The proof of this result is just calculation based. We
prove it by using Table 1. We know that

Sd(G,x) = > m(G,k)x x**

k-1
2(2k+Z2(k+r))

Sd(G,x)=3{(2k—1)+2ki(2k—r—1)x SO

r=1

= Sd(G, X) = 3{(2Kk —1) + 2(2k —1—1)x2*2+1) | 0k 9 _1)x2k+2(+2)
+...2+ (Zk —k +1_1)X2(2k+2(k+k_1))}
= Sd(G, X) = 3{(2k —1) + 2(2k — 2)x2@-20) | 22k — 3)x2@k+2k+2)

+... 24 2kl

Next we compute Pl polynomial of H, nanotube.

Following theorem explains the Pl polynomial of this
family of nanotubes.

Theorem 2.1.3. Consider the graph of H, nanotube
V K eN. Then its Pl polynomial is as follows:
PI(G, x) = 3{(2k (2k —1) + (2k —1)kf;2(k +1) +4kkf:(2k —r-1)

k-1
2(2k+22(k+r))

+ ZZ(Zk —r —1)(Zz(k +ONx )}
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Proof: Let G be the graph of H, nanotube V kK en.
We prove it by using Table 1. We know that

PI(G,x) =D m(G,k)xkxx**
k
PI(G,x) = 3{((2k -1) + 2§(2k —r-1))(2k + kfp(k +1))

k-1
2(2k+22(k+r))
x = )}

= PI(G, x) = 3{(2k (2k —1) + (2k —1)kf;2(k )+ 4kki(2k —r-1)
k-1

k-1 1 2(2k+22(k+r))
+2y (k-r-n2k+n)x  F )}

2.2 Hexagonal ParallelogramP(m, n) ¥m, n €N
nanotube

In this section, we determine Omega, Sadhana and Pl
polynomials for P(m,n) ¥ m,neN nanotube. This

nanotube have also applied the interpolation method to
some other classes of two parametric families of graphs.
We just briefly present them for the hexagonal

parallelogram graphs P(m, n) . These graphs consists of a
hexagons arranged is a parallelogram fashion, where the
hexagonal parallelogram graph P(5,4) is depicted in
figure. In P(m, n) nanotube, where M is the number of
hexagons in any row and N is the number of hexagons in
any column. We have |V (P(m,n))|=2m+2n+2mn
and

m-1
2mn+2m+n+1+2>(i+1), m=n
i=1

2mn+m+2n+1+2>(i+1), m>n
i=1

|[E(P(m,n) =

2mn+2m+n+1+2>(i+1), m<n
i=1

Now we compute Omega polynomial of P(m,n)
nanotube.

Fig. 2. A representation of P(5,4) nanotube.

Theorem 2.2.1.The Omega polynomial of P(m,n)
nanotube ¥ m,n N is as follows:

i42)
(N+DX™ +mx"™ +2x= " m=n
Iné('*l)
Q(P(m,n),x) =< nx™ +(M+2)x"*+2x~ ,m>n
3 (i+1)
(+D)x™ +mx" 4 2% m<n
Proof: Let G be the graph of Hexagonal

Parallelogram P(m,n) ¥ m,n €N nanotube. Table 2,

3 and 4 shows the number of co-distant edges in G . By
using Table 2, 3 and 4 the proof is straightforward.

Table 2. Number of co-distant edges of P(m,n) V
m,n €N nanotube when m =n

Types | Types of No of No of
of qoc’s edges co-distant goc
edges
Cl el m+1 n
C, e, n+1 m
C e =
s s D (i+1) 2
i=1
m+1 1

Table 3. Number of co-distant edges of P(m,n) V
m,Nn €N nanotube when m >n

Types | Types of No of No of
of qoc’s edges co-distant goc
edges

Cl e m+1 n
Cz e2 n+1 m

C e 5.
s s D (i+1) 2

i=1

n+1 1

Table 4. Number of co-distant edges of P(m,n) V
m,Nn €N nanotube when m <n

Types | Types of No of No of
of qoc’s edges co-distant goc
edges
C, e m+1 n
C2 62 n+1 m
C e ad, .
s s D (i+1) 2
i=1
m+1 1
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Now we apply formula and do some easy calculation to
get our result.

Q(G,x) = > m(G, k) x x*

Form=n
m-1
> (i+1)
Q(G, x) = nx™ + mx"™* +2x= T 41x™

m-1

(i+1)
= Q(G, x) = (N+D)x™* + mx"" + 2x*=

For m>n
3 (i+1)
Q(G, x) = nx™ + mx"" +2x=  +1x""
i(m)
= Q(G,x) = nx™ + (M +Dx"* +2x=

For m<n

—_ m+1 n+l El( +1) m+1
QG,X) = (N+D)Xx™ + mx"™ +2x +1X

i(iﬂ)

= Q(G,x) = (n+Dx™ + mx"* +2x=

In the following theorem, the Sadhana polynomial of
Hexagonal Parallelogram P(m,Nn) ¥ mn en nanotube

is computed.
Theorem 2.2.2.The Sadhana polynomial of Hexagonal

Parallelogram P(m,n) ¥V m,neN nanotube is as
follows:

m-1 m-1
2mn+m+n+2 Y, (i+1) 2mn+2m+2 Y (i+1)
i=1

(n+1)x U4 mx +
2mne2mens1+2'S (i+1)

2X = m=n
2mn+2n+2 3 (i+1) 2mnmn+2 3 (i+1)

nx B+ (m+1)X =4

Sd(P(m,n),x) = .
2mn+m+2n+1+ Y (i+1)
2X = m>n
2mnemen+142 3 (i+1) 2mn+2m+2 3 (i+1)
i=1 i=1

(n+1)x + mx +

2mn+2m+n+1+g) (i+1)
i=1

2X ,m<n

Proof: Let G be the graph of Hexagonal
Parallelogram P(m,n) V m,n €N nanotube. By using

Table 2, 3 and 4, the proof is easy. Now we apply formula
and do some computation to get our result.

Sd(G,x) = > m(G,k)x x**

For m=n

-1 -1
2mn+2m+n+1+2 mz (i+1)—(m+1) 2mn+2 m+n+1+2mz (i+1)—(n+1)
i=1 i=1

Sd (G, x) = nx

m-1 m-1
2mn+2m+n+1+2 ¥ (i+1)- X (i+1)
i=1 i=1

mx

-1
2mn+2m+n+142'y (i+1)~(m-+L)
i=1

2X + X

m-1
2mn+m+n+2 Y (i+1)

= Sd(G,x) = (n+1)x =4 mx

m-1
2mn+2m+2 Y, (i+1)
i=1

+

-1
2mn+2m+n+1+2mz (i+1)
i=1

2X
For m>n

2mn+m+2n+1+2%(i+1)—(m+1) 2mn+m+2n+1+2§(i+l)—(n+l)
Sd(G, x) = nx = +mx =

2mn+m+2n+1+2 % (i+l)—%(i+l) 2mn+m+2n+1+2 % (i+1)—(n+1)
i=1 i=1 i=1

2X

2mn+2m+2i(i+l)
+ mX = +

2mn+m+n+1+2i (i+1)

= Sd(G,x) =(n+1)x =
2mn+2m+n+1+i(i+1)

2X =

For m<n

2mn+2m+n+142 3 (i+1)~(m-L) 2mn+2men+142 3 (i+1)~(n+1)
= i=1

Sd (G, x) = nx

2mn+2men+142 3 (i+1)- 3 (i+1)
=t i=1

mx
2mn+2men1+2 3, (i+2)-(m+1)
2X i=1

2mn+m+n+1+2§(i+1) 2mn+2m+2§(i+l)
i=1 i=1

= Sd(G,x) = (n+1)x

2mn+2m+n+1+%(|+1)
i=1

+MmX

Now we compute PI polynomial of Hexagonal
Parallelogram  P(m,n) ¥V m,neN nanotube.
Following theorem shows the PI polynomial for this finite
family of nanotubes.

Theorem: Consider the graph of Hexagonal
Parallelogram P(m,n) ¥ m,n €N nanotube. Then its
P1 polynomial is as follows:

m-1 m-1
2mn+m+n+2 Y (i+1) 2mn+2m+2 ¥ (i+1)
= =

(mn+m+n+1)x +(mn+m)x

1
2mne2mintde ¥ (i+1)
i=1

2mi1(i+1)x ,m=n
i=1

n n
2mn+2n+2 3 (i+1) 2mn+m+n+2 Y (i+1)
i=1

(mn+n)x =4 (mn+m4+n+1)x
PI (P(m’ n)' X) = n 2mn+m+2n+1+£(i+l)
2> (i+D)x = m>n
i=1

2mnemsn+2 3 (i+1) 2mn+2m+2 3 (i+1)
& &

(mn+m+n+1)x +(mn+m)x
m . 2mn+2m+n+1+)’2(|+1)

2> (i+1)x = m<n
i=1

Proof: Let G be the graph of Hexagonal
Parallelogram P(m, n) ¥V m n eN nanotube. The proof of

this result is just calculation based. We easily prove it by
using Table 2, 3 and 4. We know that

PI(G,X) =D m(G,k)xkxx*"
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For m=n

-1
2mn+2m+ n+1+2mz (i+1)—(m+1)
i=1

PI (G, x) = n(m+1)x

amne2minste2"S (i41)-(n41) m1 m-1
o1 2mn+2m+n+1+2 ¥ (i+1)- ¥ (i+1)
i=1 i=1

m(n+1)x 25 (i +1)x
i=1

m-1
2mn+2m+n+1+2 Y, (i+1)—(m+1)
i=1

+(Mm+21)x
2mn+men+2'S (i+1)
= PI(G,x)=(mMn+m+n+1)x =4
2mn+2m+2r_ni1(i+l) m-1 . 2mn+2m+n+l+r_ﬂi1(i+l)
(mn-+m)x 423 (1+D)x =
i=1
For m>n

n
2mn+m+2n+1+2 Y, (i+1)—(m+1)
i=1

PI(G,x) =n(m+21)x

2mn+m+2n+142 3 (i+1)~(n+1) 2mn+m+2n+142 3 (i+1)- 3 (i+1)
i=1 i=1 i=1

m(n+1)x +2i(i +1)x

Zmn+m+2n+l+2%(i+1)—(n+l)

+(n+1)x =
2mn+2n+23 (i+1)

= PI(G,x) = (mn+n)x 4

2mn+m+n+2§(i+1)

(mn+m+n+1)x T
2mn+m+2n+1+_§(i+l)

23(i+1)x

For m<n

2mn+2men+142 3 (i+1)—(m+1)
i=1

PI(G, x) = n(m+1)x

2mn+2m+n+1+2 E (i+1)—(n+1)
i=1

m(n +1)x + 25 +1)x
i=1
2mn+2m+n+142 3 (i+1)~(m-+1)
+(m+1)x =
2mn+mn+23, (i +1)
= PI(G,x)=(mMn+m+n+1)x 4

m
2mn+2m+n+1+ Y (i+1)

+25(i+1)x
i=1

2mn+2m+23, (i+1)
(mn+m)x =

2.3 Zigzag-edge Coronoid fused with Starphene
nanotubes ZCS(k,l,m)

In this section, we compute Omega, Sadhana and PI
polynomials for ZCS(Kk,l,m) nanotubes. This system
considered in this work is a composite benzenoid obtained
by fusing a zigzag-edge coronoid ZC(k,l,m) with a
starphene  St(k,l,m) . This system, abbreviated as

have

for
co-distant edges in G .

2mn+2mn+142 3 (i+1)- 3 (i+1)
=1 i=1

ZCS(k,l,m), is depicted in figure ZCS(4,4,4). We
|V (ZCS(k,I,m))|= 36k —54 and
| E(ZCS(K,1,m)) |= 15k +15I +15m—63 . Now we

compute Omega polynomial of Zigzag-edge Coronoid
fused with Starphene ZCS(K, |, m) nanotube.

O

74

Fig. 3. A representation of ZCS(4,4,4) nanotube.

Theorem 2.3.1.The Omega polynomial of nanotube
ZCS(k,I,m) for kK=1=m2>4 isequal to:

O(ZCS(K,1,m),x) = (k* +9)x"* 2"+ (17 + 9)x™ 2 + (m* + 9)x"*"

Proof: Let G be the graph of ZCS(k,l,m) nanotube
K=l=m2>4 . Table 1 shows the number of

By using Table 5 the proof is straightforward.

Table 5. Number of co-distant edges of ZCS(K, I, m)

nanotube.
Types of | Types of No of No of
qoc’s edges co-distant goc
edges

C, e 15k - 21 K2+ 9

2
C, e, 151 - 21 I"+9

2
C, e, 15m-21 m°+9

Now we apply formula and do some easy calculation to
get our result.

Q(G,x) = > m(G, k) xx*
k
Q(G, x) = (K? +9)x"* 4+ (17 + 9) ™21 - (m? + 9)x™>" 2

In the following theorem, the Sadhana polynomial of
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ZCS(Kk,l,m) nanotube is computed.

Theorem 2.3.2. The
ZCS(k,l,m) nanotube for
follows:

Sadhana polynomial of
k=l=m2>4 is as

Sd (G, X) = (k2 + 9)X15|+15m—42 + (l 2, 9)X15k+15m—42 n
(m2 +9)X15k+15|—42

Proof: Let G be the graph ZCS(k,I,m) of

nanotube for K =1 =m > 4 By using Table 5 the proof is
easy. Now we apply formula and do some computation to
get our result.

Sd(G,x) = > m(G,k)x x**

Sd (G, X) - (k2 +9)X15k+15|+15m—6}15k+21 + (|2 +9)X15k+15|+15m—6}15|+21 +

(m2 + 9) X15k+15| +15m-63-15m+21

= Sd (G, X) = (k2 + 9)X15|+15m—42 + (l 2 + 9) X15k+15m—42 "
(m2 +9)X15k+15|—42

Now we compute PI polynomial of ZCS(k,I,m)

nanotube for K =1 =m>4. Following theorem shows
the PI polynomial for this finite family of nanotubes.

Theorem 2.3.3. Consider the graph of ZCS(k, I, m)

nanotube, for K =1 =m>4. Then its Pl polynomial is as
follows:

PI(ZCS(k,I,m),x) = (15k® — 21k +135k —189)x** ™42 -
(151° — 2117 +135] —189)x '™ 4
(15m® —21m? +135m —189) x****%~#2

Proof: Let G be the graph of ZCS(k,I,m)

nanotube, for K =1 =m>4. The proof of this result is
just calculation based. We easily prove it by using Table 5.
We know that

PI(G,x) =D m(G,k)xkxx*™

PI(G,x) = (k2 +9)(15k _21)X15k+15l+15m—63—15k+21 N
(I 2 + 9)(15' _ 21) X15k+15|+15m—63—15|+21 +
(mz +9)(15m— 21)X15k+15l+15m—63—15m+21

= PI(G, x) = (15k® — 21k? +135k —189)x** 5™
. (151° — 2112 +135] —189)x %1om-2

+(15m® — 21m? +135m —189) x 1542

3. Conclusion and general remarks

In this paper, three important counting polynomials
called Omega, Sadhana and Pl are studied. These
polynomials are useful in determining Omega, Sadhana and
Pl topological indices which play an important role in
QSAR/QSPR study. We computed these polynomials for
H, nanotube, P(m,n) nanotube and ZCS(k,I,m)

nanotube.
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